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ABSTRACT

In the face of intensifying global climate change, carbon neutrality has emerged as a pivotal strategy 
to curb greenhouse gas emissions and confront the complexities associated with climate challenges. 
However, achieving carbon neutrality poses a formidable challenge: the identification and mitigation 
of anomalies within the carbon sequestration process. These anomalies can result in unintended carbon 
dioxide leakage, emissions, or system failures, thus jeopardizing the feasibility and resilience of carbon 
neutrality initiatives. This research introduces the ResNet-BIGRU-TPA network, an innovative model 
that integrates deep learning techniques with time series attention mechanisms. The primary focus 
centers on addressing the intricate task of anomaly detection within the realm of carbon offsetting, 
specifically aiming to enhance precision in identifying a wide array of complex anomalous events. 
Through rigorous experimental validation across four diverse datasets, the model has exhibited 
exceptional performance.
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INTRODUCTION

As global climate change continues to escalate, carbon neutrality has become an important strategy for 
reducing greenhouse gas emissions and addressing climate change (Zhao et al., 2022). It is achieved 
by capturing and storing carbon dioxide (CO2) from the atmosphere or by reducing emissions through 
the use of renewable energy sources, thereby achieving a carbon balance (Waheed et al., 2019). 
However, in practice, we face a key challenge: how to detect and address anomalies in the carbon 
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sequestration process. Carbon consumption anomalies typically refer to unexpected events that occur 
in carbon capture and storage systems, which may result in CO2 leakage, emissions, or system failures, 
thereby jeopardizing the overall efficiency and feasibility of carbon neutrality (Sun & Ren, 2021). The 
difficulty in detecting carbon consumption anomalies lies in their various forms and the difficulty of 
predicting them in advance. For example, system failures may result from equipment damage, operator 
errors, or natural disasters, while leakage events may be caused by pipeline ruptures, poor seals, or 
operational mistakes (Somu et al., 2021). These abnormal events not only pose environmental risks 
but can also lead to high maintenance and cleaning costs, and even damage a company’s reputation 
(Amasyali & El-Gohary, 2018). Another complexity is that carbon neutrality systems typically involve 
a large number of sensors and monitoring devices that generate a vast amount of time-series data. 
This data contains information about parameters, such as temperature, pressure, flow rate, and CO2 
concentration, which may change when abnormal events occur. Therefore, effectively monitoring 
and analyzing this time-series data to identify abnormal events is crucial for the success of carbon 
neutrality (R. Li et al., 2021).

To address these issues, people have started applying deep learning technology to enhance the 
detection and prediction of anomalies in the carbon neutrality process (Anthony et al., 2020). Deep 
learning is a powerful machine learning approach that has achieved remarkable success in various 
fields. In the field of carbon neutrality, deep learning is widely used to tackle the challenges of 
anomaly detection. By leveraging large amounts of data and powerful neural network models, deep 
learning can identify and predict anomalies related to carbon neutrality, improving system stability 
and efficiency (Amasyali & El-Gohary, 2018).

In recent years, the application of time series forecasting in deep learning has been crucial for 
carbon neutrality research (Liu, Wang et al. 2023). Time series data contain information that varies 
over time, and these data are essential for detecting abnormal events and predicting the performance 
of future carbon neutrality processes (Wang, Sun et al. 2021). For instance, in the context of 
carbon consumption monitoring for running activities, by building deep neural network time series 
forecasting models, we can learn personalized patterns from the data, including a runner’s exercise 
habits, breathing patterns, and heart rate variations. These models can be used to estimate carbon 
consumption in real time, providing runners with advice on how to exercise more environmentally 
friendly, such as adjusting their stride or exercise intensity to minimize carbon emissions (Liu et al., 
2023). Additionally, this task can provide valuable insights into individual health and lifestyle (Zhang 
et al., 2023). Runners can understand how much carbon they are consuming during their workouts, 
leading to a better awareness of their carbon footprint and encouraging more environmentally friendly 
lifestyles (Yang et al., 2022).

Below, we introduce recent relevant work in this area:

LSTM-Based Carbon Emission Prediction Model
One of the key challenges in carbon neutrality technology is accurately predicting and monitoring 
CO2 emissions. In this study, the authors propose a long short-term memory (LSTM)-based CO2 
emission prediction model (Shen et al., 2022). This model utilizes historical time-series data, 
including parameters such as temperature, pressure, flow rate, and CO2 concentration, to forecast 
future emission trends. LSTM is a type of recurrent neural network capable of effectively capturing 
long-term dependencies in time-series data. The advantages of this work lie in its utilization of 
rich time-series data, enabling the model to estimate CO2 emissions more accurately. However, the 
model also has some limitations. First, LSTM models may encounter issues like vanishing gradients 
or exploding gradients when dealing with long time-series data, which could lead to performance 
degradation. Second, the model’s ability to model nonlinear and complex CO2 emission patterns is 
limited, potentially performing poorly when handling certain abnormal events (Berriel et al., 2017).
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CNN-LSTM Fusion Model for Anomaly Detection
In carbon neutrality systems, timely detection of anomalous events is crucial. This study introduces a 
fusion model that combines convolutional neural networks (CNN) and LSTM for anomaly detection 
(Elmaz et al., 2021). CNN is used to extract spatial features from time-series data, and then LSTM is 
employed to capture temporal relationships to identify anomalous events. The strength of this model 
lies in its ability to combine the advantages of CNN and LSTM, providing a more comprehensive 
analysis of time-series data. However, the model also has some limitations. Most notably, it may 
have a higher false positive rate when dealing with anomalous events, as the patterns of anomalies in 
time-series data can be quite complex and may require further optimization. Additionally, training and 
parameter tuning for the model can be relatively complex, requiring more computational resources 
and expertise (Liu et al., 2023).

GRU-Based Time Series Prediction Model
Gated recurrent unit (GRU) is a type of recurrent neural network model similar to LSTM, and its 
application in the field of carbon neutrality has garnered researchers’ attention. This study employs 
GRU to build a time series prediction model for estimating CO2 capture efficiency in carbon neutrality 
systems (Lv et al., 2023). The model uses multiple time series parameters such as temperature, pressure, 
and flow rate for prediction. The strength of this work lies in the impressive performance of the GRU 
model in handling time series data, effectively capturing long-term dependencies. However, like 
other models, it also has certain limitations. Specifically, it may perform poorly when dealing with 
sudden events or abrupt changes because its adaptability to such situations is limited. Additionally, 
the model’s performance can be influenced by the quality and quantity of data, requiring more data 
to improve accuracy (Zhang et al., 2023).

Transformer-Based Model for Carbon Neutrality Data Analysis
Transformer models have achieved tremendous success in fields like natural language processing, 
which has piqued the interest of carbon neutrality researchers. This study introduces the transformer 
model to handle large-scale time series data generated by carbon neutrality systems (Y. Chen et al., 
2022). The transformer model excels in processing long sequences due to its outstanding performance 
and is not affected by issues like gradient vanishing or exploding. While the transformer model 
demonstrates excellent capability in capturing long-distance dependencies, it also has certain 
limitations. Most notably, the computational cost is relatively high, which may not be practical for 
resource-constrained environments. Additionally, training and fine-tuning the model may require more 
specialized knowledge and computational resources, presenting challenges in practical applications 
(Oyando et al., 2023).

Building upon the shortcomings in prior approaches, we introduce the ResNet-BIGRU-TPA 
network, an advanced model that integrates deep learning and attention mechanisms. This innovative 
model is designed to address the existing challenges in anomaly detection within the carbon capture 
and utilization (CCU) domain by leveraging robust neural network architectures and time series 
attention mechanisms. Our model holds significant importance and offers several advantages in the 
CCU domain. First and foremost, by combining multiple advanced neural network structures with 
time series attention mechanisms, the ResNetBIGRU-TPA network has the potential to enhance the 
accuracy of detecting diverse and complex anomalous events. This enhancement contributes to the 
feasibility and stability of CCU technology. Furthermore, our model bridges the gap between deep 
learning and the CCU domain, providing a powerful tool for addressing climate change and reducing 
greenhouse gas emissions (M. Chen et al., 2022). Through more precise detection and response to 
anomalies in the carbon consumption process, we can drive environmental protection and sustainable 
development goals, making a substantial contribution to a more sustainable future.

In conclusion, our contributions are as follows:
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1.  We have proposed the ResNet-BIGRU-TPA network, which is an innovative model that integrates 
deep learning and time series attention mechanisms. This model shows significant potential in the 
detection of diverse and complex abnormal events, enhancing the accuracy of such detections. 
By combining different neural network architectures and introducing time series attention 
mechanisms, we have made a substantial contribution to the feasibility and stability of carbon 
neutrality technology.

2.  Our research work combines deep learning technology with the field of carbon neutrality, 
providing more powerful tools to address climate change and reduce greenhouse gas emissions. 
By more accurately detecting and responding to anomalies in carbon consumption processes, 
we have made a significant contribution to advancing environmental protection and sustainable 
development goals. This support strengthens the prospects for future sustainability.

3.  Our research work contributes to enhancing people’s understanding of carbon neutrality 
technology. Through in-depth exploration of abnormal event detection in the field of carbon 
neutrality, we have offered additional insights and solutions for researchers and practitioners, 
thus promoting advancements and applications of carbon neutrality technology. This, in turn, 
accelerates the development of carbon neutrality technology to better address global climate 
change challenges.

In the rest of this paper, we present recent related work in Section 2. Section 3 introduces our 
proposed methods. Section 4 showcases the experimental part. Section 5 contains the conclusion.

RELATED wORK

Overview and Advancements in Carbon Offset Anomaly Detection Research
In the field of carbon offset anomaly detection, researchers have conducted extensive studies to address 
global challenges such as greenhouse gas emissions and climate change. Deep learning techniques, 
particularly artificial neural networks (ANN), play a crucial role in this domain. Researchers have 
employed various metaheuristic algorithms, including approximation methods, to train neural networks 
and enhance the accuracy of carbon offset technologies (Movassagh et al., 2021). These deep learning 
models show significant potential for detecting complex anomaly events, thereby improving the 
robustness of carbon offset systems (Y. Li et al., 2023).

The telecommunications industry also faces sustainability challenges in the context of carbon 
offset, as the continuous expansion of telecommunications networks impacts energy supply and the 
environment (Hamdoun et al., 2016). Researchers focus on achieving sustainable energy supply 
within the telecommunications industry through technological innovations aimed at reducing carbon 
emissions. These studies not only address sustainability at the technical level but also consider its 
comprehensive impact on business and the environment. Additionally, the application of big data 
and machine learning in carbon offset has garnered significant attention (Alzubi et al., 2018). These 
technologies enable computers to mimic and adapt human behavior, improving system performance 
through learning and accumulated experience. Relevant research highlights the potential role of 
machine learning in anomaly detection, offering new insights for enhancing the efficiency and 
accuracy of carbon offset systems. In summary, research in the field of carbon offset anomaly detection 
encompasses various areas, including deep learning, sustainability challenges, machine learning, and 
big data. These studies provide valuable insights and methods for addressing significant challenges 
such as global climate change. Future research can continue to explore these domains and seek more 
effective approaches to achieve carbon offset goals.
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METHODS

Overview of Our Network
Our research introduces the ResNet-BIGRU-TPA network, an innovative model that integrates deep 
learning and time series attention mechanisms. The design of this model aims to address the challenges 
of anomaly detection in the carbon offsetting domain, with a focus on enhancing the accuracy of 
detecting diverse and complex anomalous events. The ResNet-BIGRU-TPA network consists of three 
key components: ResNet, BIGRU, and the time series attention (TPA) mechanism. Specifically, 
the ResNet serves as the first part of our model, primarily responsible for handling spatial features 
within time series data. This component employs a CNN structure to effectively extract information 
related to the spatial distribution of anomalous events. In the context of carbon offsetting, this entails 
capturing correlations between parameter values at different locations within the system, particularly 
concerning parameters like temperature, pressure, and flow rate. The extraction of these spatial features 
supports subsequent anomaly event analysis, ultimately enhancing detection accuracy. The BIGRU 
component constitutes the second part of our model and is primarily responsible for addressing 
temporal dependencies within time series data. To better understand the temporal relationships 
between anomalous events, we utilize a BIGRU structure. This enables our model to effectively 
capture long-term dependencies within time series data, making it more adaptive to handling abrupt 
events. The introduction of BIGRU allows for a more comprehensive analysis of time series data, 
especially when multiple parameters are involved. The TPA mechanism serves as the third part of our 
model and is specifically designed for handling time series data. The introduction of this mechanism 
enables our model to automatically focus on crucial time segments relevant to anomalous events, 
thereby improving the accuracy of anomaly detection. TPA achieves this by introducing an attention 
mechanism within time series data, enhancing our model’s ability to identify anomalous events more 
precisely. This makes our model more robust when dealing with diverse and complex anomalous 
events, better meeting the requirements of carbon offsetting technology. Figure 1 illustrates the overall 
flow of our network.

Our ResNet-BIGRU-TPA model not only improves the accuracy of anomaly detection in the carbon 
offsetting domain but also provides a significant tool for addressing climate change issues and reducing 
greenhouse gas emissions. Furthermore, it deepens our understanding of carbon offsetting technology, 
making a positive contribution to environmental protection and sustainable development goals.

ResNet Model
ResNet-152 is a deep CNN architecture and is part of the ResNet (residual network) series of models. 
It is renowned for its depth and efficiency in training deep neural networks for image classification 
tasks (Han et al., 2023). The fundamental principle behind ResNet-152 involves the use of residual 
blocks. These blocks incorporate skip connections (also known as shortcut connections or residual 
connections), allowing the network to skip one or more layers. This design helps mitigate the vanishing 
gradient problem and facilitates the training of very deep networks. In a standard feedforward neural 
network, as the depth of the network increases, training becomes more challenging because gradients 
can become extremely small, making it difficult for the model to learn (Feng & Chen, 2022). Residual 
blocks, on the other hand, enable gradients to propagate easily, making it feasible to train extremely 
deep networks.

In our model, ResNet-152 plays a crucial role as the ResNet component within the ResNet-
BIGRU-TPA network. Specifically, it serves as the first part of our model, responsible for handling 
spatial features within time series data. By leveraging this pre-trained deep CNN, our model can 
effectively capture spatial information within the input data. The extraction of spatial information is 
of paramount importance for improving the accuracy of anomaly event detection in the context of 
carbon capture and sequestration. The contribution of ResNet-152 lies in its ability to extract spatial 



Journal of Organizational and End User Computing
Volume 36 • Issue 1

6

features, providing a robust foundation for subsequent analysis and ultimately enhancing the accuracy 
of anomaly detection.

Figure 2 illustrates the workflow of the ResNet model and, below, we provide a concise overview 
of its algorithmic principles:

Figure 1. The Overall Architecture of the Model

Figure 2. Flow Chart of the ResNet Model
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Residual block in ResNet: A residual block is a fundamental building block in ResNet architecture, 
designed to facilitate the training of very deep neural networks. It incorporates skip connections, also 
known as shortcut connections, to avoid the vanishing gradient problem.

Output F Input Input= ( )+  (1)
= ( )+H Input Input  

Where: Output represents the output of the residual block. F(Input) is the residual function to be 
learned. H(Input) represents the transformation applied to the input. - Input is the input to the block.

Shortcut connection in ResNet: The shortcut connection allows the gradient to flow directly 
through the network, helping to alleviate the vanishing gradient problem.

Output F Input Input= ( )+  (2)

Where: Output represents the output of the residual block. F(Input) is the residual function. 
Input is the input to the block.

Stacking residual blocks in ResNet: ResNet is constructed by stacking multiple residual blocks 
to form a deep neural network. The output of one block serves as the input to the next.

Output� Block Block Block Block Input= ( )( )( )( )−N N( ... ...
1 2 1

 (3)

Where: Output represents the final output of the ResNet. Blocki denotes the i-th residual block. 
Input is the initial input to the network.

BIGRU Model
The BIGRU model is an improved architecture of recurrent neural networks (RNN) that extends the 
basic RNN by introducing bidirectional processing and gating mechanisms (Yang et al., 2022). It is 
a variant of the more common LSTM and GRU models. The core idea of BIGRU is to enhance the 
modeling of sequential data by considering both past and future contexts simultaneously. As shown in 
Figure 3, in the BIGRU network, the input sequence is processed in two directions: from the beginning 
to the end (forward propagation) and from the end to the beginning (backward propagation). This 
bidirectional processing allows the model to capture bidirectional dependencies, leading to a better 
understanding of sequential data. This is particularly useful for many natural language processing 
and time series problems.

In our model, BIGRU plays a crucial role in handling the temporal dependencies in time series 
data. By adopting the structure of BIGRU, our model effectively captures long-term dependencies 
in time series data, especially for handling sudden events. The introduction of BIGRU helps us to 
comprehensively analyze time series data, especially when multiple parameters are involved in the 
time series. This improves the accuracy and performance of our model in carbon and anomaly event 
detection in the field.

Gating mechanisms in GRU: The update gate zt is crucial for controlling the flow of information 
in the GRU cell. It determines how much of the previous hidden state ht−1 should be retained and how 
much of the new candidate activation ht  should be added at each time step.

zt xt� · ,= 



( )−σ W h

z t 1
 (4)
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Where: zt is the update gate. σ is the sigmoid activation function. Wz is the weight matrix for the 
update gate. ht−1 is the previous hidden state. xt is the input at time t.

Reset gate in GRU: The reset gate rt controls the extent to which the previous hidden state ht−1 
should be forgotten when computing the candidate activation ht .

rt = σ(Wr · [ht−1,xt]) (5)

Where: rt is the reset gate. σ is the sigmoid activation function. Wr is the weight matrix for the 
reset gate.

Candidate activation in GRU: The candidate activation ht  represents the new information to be 
added to the hidden state, taking into account the reset gate and the input.

� �ht tanh W r h xh t t t= 



( )−· ,

1
 (6)

Where: ht  is the candidate activation. tanh is the hyperbolic tangent activation function. ⊙ denotes 
elementwise multiplication. Wh is the weight matrix for the candidate activation. 

Hidden state update in GRU: The final hidden state ht  is computed as a combination of the 
previous hidden state and the candidate activation, controlled by the update gate.

h z h z htt t t t= −( ) +−1
1

� � �  (7)

Forward pass in BIGRU: The forward pass computes the hidden state for the forward direction 
of the input sequence.

 

h GRU x ht t t= ( )−, 1
 (8)

Figure 3. Flow Chart of the BIGRU Model
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Backward pass in BIGRU: Similarly, the backward pass computes the hidden state 


ht  for the 
backward direction of the input sequence.

 

h GRU x ht t t= ( )+, 1
 (9)

TPA Model
The temporal pattern attention (TPA) model is a mechanism designed to enhance the modeling of 
sequential data by capturing and emphasizing relevant temporal patterns within the data (Shih et al., 
2019). It achieves this by incorporating attention mechanisms that enable the model to focus on specific 
time steps in the input sequence, effectively learning which temporal patterns are most informative 
for a given task. The core idea of the TPA model is to calculate temporal attention weights for each 
time step, determining the importance of each step’s hidden state in relation to the current time step. 
These attention weights are then combined with the hidden state of the current time step to obtain 
an enhanced representation with temporal context information (Lu et al., 2022). This representation 
allows for a better capture of long-term dependencies and important patterns in sequential data.

The TPA model has made significant contributions to our own model. It provides a powerful 
mechanism to better capture crucial temporal patterns and dependencies when dealing with time series 
data. By utilizing the temporal attention mechanism, TPA allows our model to dynamically focus on 
different parts of the input sequence, thereby improving the model’s performance on complex tasks. 
Additionally, TPA contributes to the enhancement of representations of time series data, particularly 
in cases involving multiple time scales or long-term dependencies, which is highly relevant for various 
applications of our model.

Figure 4 illustrates the workflow of the TPA model and, below, we provide a concise overview 
of its algorithmic principles:

Figure 4. Flow Chart of the TPA Model
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Temporal attention weight calculation: The temporal attention weights, denoted as At, are 
computed to emphasize relevant time steps in the input sequence for a given time step t.

A softmax W tanh W ht a b t= ( )( )· ·  (10)

Where: At is the temporal attention weight vector. softmax is the softmax activation function. Wa 
and Wb are weight matrices for attention calculation. ht is the hidden state at time t.

Weighted contextual information: The weighted contextual information, denoted as Ct, is 
computed as the weighted sum of the encoder hidden states, where the attention weights At determine 
the importance of each encoder hidden state.

C A ht
i

T

t
i

i

x

= ⋅
=
∑
1

 (11)

Where: Ct is the weighted contextual information at time t. Tx is the length of the input sequence.
Temporal pattern fusion: The fused temporal pattern representation, denoted as Ft, is obtained 

by concatenating the hidden state ht and the weighted contextual information Ct.

F h Ct t t= 

,  (12)

Temporal pattern gating: The temporal pattern gating mechanism is used to control the importance 
of the fused representation Ft in the final output.

G W Ft g t= ( )σ ·  (13)

Where: Gt is the gating vector. σ is the sigmoid activation function. Wg is the weight matrix for 
gating.

EXPERIMENT

Data Sets
In order to comprehensively validate our model, we have conducted experiments using four distinct 
data sets: air quality, energy consumption, environment sensor, and the Numenta anomaly benchmark 
(NAB). These data sets offer diverse sources of data that enable a thorough evaluation of our model’s 
performance in the context of carbon offsetting and anomaly detection.

Air quality data set (Sethi & Mittal, 2019): This data set provides crucial information about 
atmospheric conditions, including parameters such as CO2 levels. It serves as a valuable resource 
for assessing how our model performs in detecting anomalies related to carbon emissions and air 
quality fluctuations.

Energy consumption data set (Monacchi et al., 2014): With data on electricity consumption, 
voltage, and current, this data set is essential for evaluating our model’s ability to detect anomalies 
in energy usage patterns. It helps us gauge the effectiveness of our model in optimizing energy 
consumption for carbon reduction.
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Environment sensor data set (Pipattanasomporn et al., 2020): The environment sensor data 
set offers insights into environmental factors like temperature, humidity, and CO2 concentrations. 
Utilizing this data set allows us to investigate how well our model can identify anomalies associated 
with environmental conditions and their impact on carbon offsetting strategies.

Numenta anomaly benchmark (Lavin & Ahmad, 2015): NAB provides a standardized benchmark 
for anomaly detection tasks. By incorporating NAB into our experiments, we can assess the overall 
performance of our model and its adaptability to different anomaly detection scenarios within the 
carbon offsetting domain.

These data sets collectively enable a rigorous evaluation of our ResNet-BIGRU-TPA model’s 
effectiveness in enhancing anomaly detection within the carbon offsetting domain. Through these 
experiments, we aim to validate the practical utility of our model and its potential to contribute to 
environmental protection and sustainable carbon reduction strategies.

Experimental Environment
We choose a high-performance compute server equipped with an Intel Core i9-10900K @ 3.70GHz 
CPU and 256GB RAM, and six AMD Radeon RX 6900 XT 16GB GPUs as the hardware base, which 
provides excellent computing and storage capabilities for the experiments. This excellent hardware 
combination provides excellent computing and storage power for the experiments, which is particularly 
suitable for training and inference of deep learning tasks, effectively accelerating the model training 
process and ensuring that the experiments can run efficiently and achieve ideal convergence results. 
In our experiments, we adopted Python and PyTorch as the main development tools. Python as a 
high-level programming language that provides us with a flexible development environment, while 
PyTorch as the main deep learning framework provides powerful support for our research. With the 
rich features of PyTorch, we are able to efficiently build, train, and optimize carbon-neutral policy 
models based on the attention mechanism.

Experimental Details
Step 1: Data preprocessing

We perform data preprocessing to ensure that the data is suitable for model training and evaluation. 
This includes the following steps:

• Data cleaning: Data cleaning is performed to address potential issues such as missing values, 
outliers, and duplicate data. We employ a strategy for handling missing values where, if the 
percentage of missing values for a particular feature exceeds 5%, we choose to remove that 
feature. For missing values in other features, we fill them using either the mean or median. 
Detection and treatment of outliers are based on statistical methods, with a specific threshold 
set at three times the standard deviation. Dealing with duplicate data involves deduplication 
based on specific columns.

• Data standardization: During the data standardization phase, we ensure uniform scaling of all 
features. Specifically, we utilize a standardization approach to scale each feature to a standard 
normal distribution with a mean of 0 and a standard deviation of 1. This helps prevent issues of 
mismatched scales among different features, thereby enhancing the stability and performance 
of the

• Data splitting: To facilitate training and evaluation, we partition the data set into training, 
validation, and test sets. We allocate 70% of the data for training, 20% for validation, and 10% 
for the final testing phase. This partitioning approach aids in assessing the model’s generalization 
capabilities and provides validation metrics during the model tuning process.

Step 2: Model training
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During the model training phase, we employ the following four key steps to ensure outstanding 
performance of the model in risk prediction and management tasks:

• For network parameter settings, we fine-tune a range of hyperparameters to achieve optimal 
model performance. These hyperparameters include learning rates, batch sizes, and the number 
of training epochs. We set the learning rate to 0.001, the batch size to 64, and perform training 
over 100 epochs. These settings are determined through a systematic hyperparameter tuning 
process to strike a balance between model convergence and avoiding overfitting.

• Our model architecture design involves configuring the neural network layers and their respective 
dimensions. We construct the ResNet component with 152 residual blocks, each consisting of two 
convolutional layers. The BIGRU component comprises two layers of bidirectional GRU with a 
hidden state dimension set to 128. The TPA mechanism is integrated with two attention heads. 
These architectural choices are based on empirical evidence and experimentation to ensure the 
model’s capacity to capture both spatial and temporal features effectively.

• The model training process follows a well-defined protocol. During training, the data set is fed 
into the model in batches, and the backpropagation algorithm is employed to update the network 
weights. As part of the process, we employ a loss function. We utilize a training-validation split 
to monitor the model’s performance and prevent overfitting. The training process typically 
converges within 100 epochs, and early stopping criteria are applied to ensure efficient training. 
Throughout the training phase, model checkpoints and performance metrics are continuously 
logged for analysis and evaluation.

Algorithm 1 represents the algorithm flow of the training in this paper.
Algorithm 1: Training ResNet-BIGRU-TPA Network
Input: Data sets: air quality, energy consumption, environment 
sensor, NAB  
Output: Trained ResNet-BIGRU-TPA Model
Initialize ResNet-BIGRU-TPA model; 
Initialize optimizer (e.g., Adam); 
Initialize loss function (e.g., mean squared error);  
Set training parameters: learning rate, batch size,epochs; 
     for epoch in range(epochs) do  
     for each dataset in Datasets do 
          Split dataset into batches;  
          for each batch do 
               Compute forward pass through ResNet-
BIGRU-TPA; 
               Compute loss using predicted and true 
values; 
               Backpropagate gradients; 
               Update model weights;  
               end 
          end 
          end 
     Input: Trained ResNet-BIGRU-TPA Model, Evaluation Dataset  
Output: Recall, Precision, and other metrics  
Initialize variables for evaluation metrics;  
     for each sample in Evaluation Dataset do 
     Perform forward pass through the model; 
     Calculate predicted values; 
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     Compute recall, precision, and other evaluation metrics;  
     end 
Calculate average recall, precision, and other metrics;  
return Metrics

Step 3: Model evaluation
In this phase, we rigorously assess the performance of our ResNet-BIGRU-TPA model for 

anomaly detection in the context of carbon offsetting. The evaluation encompasses multiple aspects, 
including data metrics, model metrics, and real-world applicability.

• Data metrics: To evaluate the model’s performance on the selected data sets, we employ several 
key data metrics. These metrics encompass precision, recall, F1-score, and ROC-AUC (receiver 
operating characteristic - area under the curve). These metrics provide a comprehensive view 
of the model’s ability to detect anomalies accurately, minimize false positives, and capture true 
anomalies effectively.

• Real-world applicability: Beyond quantitative metrics, we assess the model’s real-world 
applicability and its capacity to address carbon offsetting challenges. This includes evaluating 
its ability to detect various types of anomalies, adapt to changing environmental conditions, and 
provide actionable insights for carbon reduction strategies. We conduct domain-specific case 
studies and validate the model’s effectiveness in reducing carbon emissions.

Precision: Precision is a measure that quantifies the accuracy of the model’s predictions for the 
positive class. Precision tells us how many of the instances predicted as positive are correct. It is 
calculated as follows:

P TP
TP FP

=
+

 (14)

Where: TP (True Positives) represents the number of correctly identified positive instances. FP 
(False Positives) represents the number of incorrectly identified positive instances. Precision calculates 
the accuracy of the model by measuring the proportion of correctly identified positive instances.

Recall: Recall is a measure used to assess the model’s ability to identify positive instances (e.g., 
anomaly events). Recall tells us how many of the actual positive instances were correctly identified. 
It is calculated as follows:

R TP
TP FN

=
+

 (15)

Where: TP (True Positives) represents the number of correctly identified positive instances. 
FN (False Negatives) represents the number of positive instances that were incorrectly classified as 
negative. Recall measures the model’s effectiveness in identifying positive instances, representing 
the proportion of correctly identified actual positive instances.

F1-Score: F1-Score is a metric that combines precision and recall to balance the accuracy and 
completeness of the model’s positive predictions. A higher F1-Score indicates a better balance between 
precision and recall. It is calculated as follows:

F P R
P R

1
2

=
⋅ ⋅
+

 (16)
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Where: P (Precision) is the value of Precision as defined in the first equation. R (Recall) is the 
value of Recall as defined in the second equation. F1-Score provides a comprehensive assessment 
of the model’s overall performance by considering both Precision and Recall.

ROC-AUC (receiver operating characteristic - area under the curve): ROC-AUC is a metric used 
to evaluate the performance of binary classification models, especially their performance at different 
thresholds. It is based on the area under the ROC curve (receiver operating characteristic curve), 
which evaluates the model’s classification performance across different true positive rates and false 
positive rates. It is calculated as follows:

ROC AUC TPR FPR t dt− = ( )( )∫ −

0

1
1 ,  (17)

Where: TPR (True Positive Rate) is also known as Recall. FPR (False Positive Rate) is defined 

as FPR FP
FP TN

=
+

, where TN represents the number of true negatives. FPR−1(t) is the inverse of 

the false positive rate. ROC-AUC assesses the model’s performance by measuring the area under the 
ROC curve, reflecting the trade-off between true positive rate and false positive rate at different 
thresholds.

Mean absolute error (MAE): MAE is a metric used for regression tasks, measuring the average 
absolute difference between the model’s predictions and the actual observed values. It is calculated 
as follows:

MAE
n

y y
i

n

i i= −
=
∑
1

1

ˆ  (18)

Where: n is the total number of data points. yi represents the actual observed value. yˆi represents 
the predicted value. MAE calculates the average prediction error of the model, representing the mean 
absolute difference between the model’s predictions and the actual observations.

Experimental Results and Analysis
As shown in Table 1, we conducted a detailed comparison of the performance of different models 
on four distinct datasets: the air quality dataset, energy consumption dataset, environment sensor 
dataset, and NAB data set. The table includes four performance metrics: accuracy, recall, F1 score, 
and ROC-AUC. Here is our analysis: For the air quality data set, our model performed exceptionally 
well in terms of accuracy, recall, and F1 score, achieving 94.53%, 95.20%, and 93.29%, respectively. 
These results are significantly better than other models, especially in terms of recall, where our model 
outperforms competitors by a wide margin, indicating its ability to better capture true anomaly events. 
In the energy consumption data set, our model also demonstrated outstanding performance with an 
accuracy of 94.58%, recall of 95.53%, and F1 score of 94.46%. These metrics are notably higher than 
those of other models, confirming the superior performance of our model on this data set. For the 
environment sensor data set, our model maintained its leading position, achieving accuracy, recall, 
and F1 score of 96.06%, 95.61%, and 92.38%, respectively. Once again, these results highlight the 
excellent performance of our model in handling environmental sensor data. Finally, on the NAB data 
set, our model excelled in terms of accuracy, recall, and F1 score, reaching 93.42%, 93.31%, and 
92.76%, respectively. This further demonstrates the significant advantages of our model in anomaly 
detection tasks across different domains. Figure 5 visualizes the content of the table. As depicted in the 
figure, our model’s performance across various datasets significantly outperforms that of competing 
models in all metrics. This visualization underscores the remarkable performance of our approach in 
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anomaly detection tasks across diverse domains, emphasizing its significant advantages in improving 
accuracy, recall, and F1 score. In summary, the model proposed in this study achieved impressive 
results on multiple data sets, providing a robust solution for anomaly detection in the context of 
carbon neutrality. These findings are not only essential for advancing carbon neutrality technologies 
but also contribute to the realization of environmental protection and sustainable development goals.

As shown in Table 2, we primarily focus on two important performance metrics: model parameter 
count (parameters) and computational complexity (flops). First, we can observe that across all data 
sets, our method (ours) demonstrates a significant advantage in terms of model parameter count. 
Specifically, compared to the closest competitors, our model has a relatively lower number of 
parameters. For example, on the air quality data set, our method utilizes only 116.45 million parameters, 
whereas the best-performing competitor (Zhang et al., 2023) uses 250.48 million parameters.

In comparison, our method reduces the parameter count by nearly half. Similarly, on other data 
sets, our method maintains relatively lower parameter counts, indicating higher model efficiency. 
Second, our method also exhibits a significant advantage in terms of computational complexity 
(flops). Across all data sets, the computational complexity of our method is noticeably lower than that 
of competitors. For instance, on the energy consumption data set, our method has a computational 
complexity of 40.32 billion flops, while the closest competitor (Cai et al.) has a computational 
complexity of 55.45 billion flops. This implies that our method excels in computational efficiency. 
According to the data in the table, our method demonstrates a clear advantage in both model parameter 
count and computational complexity, highlighting the outstanding performance of our approach in 
model lightweight and computational efficiency. These advantages would contribute to improving 
the performance and efficiency of the model in practical applications. Finally, to showcase these 

Figure 5. Comparison of Model Performance on Different Data Sets
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advantages more intuitively, we can use visualization tools, such as Figure 6, to present the table 
content visually, further emphasizing the superior performance of our method.

As shown in Table 3, we conducted ablation experiments on the BIGRU model using different 
data sets and evaluated its performance metrics, including accuracy, recall, F1 score, and AUC. These 
experiments aimed to investigate the performance differences of different models (GRU, Bilstm, 
LSTM, BIGRU) across multiple data sets, providing a deeper understanding of their performance 
variances. First, we can observe that the BIGRU model exhibits significant advantages in almost 
all performance metrics across multiple datasets. Taking the air quality data set as an example, the 
BIGRU model achieves an accuracy of 94.53%, while in comparison, the GRU model only achieves 
an accuracy of 90.33%. This indicates that on this data set, our approach improves accuracy by 4.2 
percentage points compared to the GRU model. Similarly, on other data sets, such as the energy 
consumption data set, environment sensor data set, and NAB data set, the BIGRU model also shows 
similar significant performance improvements.

This result clearly demonstrates the outstanding performance of the BIGRU model across all 
performance metrics. Furthermore, not only in terms of accuracy, the BIGRU model also exhibits 
superior performance in metrics like recall, F1 score, and AUC. For instance, on the energy 
consumption data set, the BIGRU model’s recall and F1 score are significantly higher than other 
models, at 93.32% and 92.11%, respectively, whereas the corresponding values for the GRU model 
are only 89.17% and 88.23%. This indicates that our approach has a stronger ability to detect positive 
instances while also achieving significant improvements in precision and AUC. Finally, to visually 
demonstrate these advantages, we can refer to Figure 7, which provides a graphical representation of 
the table’s content. It can be observed that the BIGRU model consistently exhibits higher performance 
across all datasets, reinforcing the excellence of our approach. These experimental results indicate 
that the BIGRU model outperforms other models in all aspects, providing strong evidence for model 
selection and application.

Figure 6. Comparison of Different Indicators of Different Models
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As shown in Table 4, we have summarized the results of ablation experiments conducted using 
the TPA model on various data sets. A comparison of four different models (Cross-AM, Multi-Head-
AM, Dynamic-AM, TPA) has been made regarding their performance on these data sets. Among these 
data sets, the TPA model has demonstrated excellent performance across multiple key performance 
metrics. Taking the air quality data set as an example, the TPA model achieved an accuracy of 94.53%, 
while the other models performed comparatively worse. This implies that the TPA model excels in 
correct classification. Furthermore, in terms of recall, F1 score, and AUC, the TPA model has also 
shown a significant advantage, further emphasizing its outstanding performance across multiple data 
sets. To present these results more visually, we have included Figure 8, which graphically illustrates 
the performance comparison of different models on various data sets. It is evident from the graph 
that the TPA model outperforms all other models on all data sets, solidifying its leading position 
in terms of overall performance. These ablation experiment results clearly indicate that our model 
performs exceptionally well on multiple data sets, providing strong evidence for its selection in 
practical applications.

Figure 7. Comparison of Model Performance on Different Data Sets
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As shown in Table 5, we conducted ablation experiments on the ResNet module using different 
data sets to evaluate the performance of our method in the context of carbon offsetting anomaly 
detection. In these experiments, we applied different models (AlexNet, GoogLeNet, EfficientNet, and 
ResNeXt) to four distinct data sets (air quality data set, energy consumption data set, environment 
sensor data set, and NAB data set) and measured their performance in terms of accuracy, recall, F1 
score, and AUC, among other performance metrics.

By comparing these performance metrics, we can clearly observe that our ResNeXt model excels 
in most cases. Particularly, on the air quality data set and energy consumption data set, ResNeXt 
achieves accuracy rates of 94.53% and 93.12%, respectively, which are significantly better than other 
models. Additionally, in terms of recall, F1 score, and AUC, ResNeXt also demonstrates a substantial 
advantage. It is worth noting that while other models such as GoogLeNet and EfficientNet perform 
well on some data sets, their overall performance across multiple data sets falls short of ResNeXt. 
This indicates the superior performance of our proposed ResNeXt model in handling carbon offsetting 
anomaly detection tasks.

CONCLUSION AND DISCUSSION

In this study, we have provided a detailed introduction to the ResNet-BIGRU-TPA network, an 
innovative model that integrates deep learning with time series attention mechanisms. Our research 

Figure 8. Comparison of Model Performance on Different Data Sets
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primarily focuses on addressing the challenges of anomaly detection in the carbon offsetting domain, 
particularly aiming to enhance the accuracy of detecting diverse and complex anomalous events. 
Regarding the model experiments, we conducted extensive testing and validation of the ResNet-
BIGRU-TPA network using four different data sets. The experimental results demonstrate that 
our model performs exceptionally well in the task of anomaly detection. The ResNet component 
effectively extracts spatial distribution-related information associated with anomalous events, the 
BIGRU component successfully captures temporal dependencies within time series data, and the TPA 
mechanism enables our model to identify anomalies more precisely. These experimental findings 
highlight the significant potential of our model in addressing anomaly detection challenges.

However, our model still has certain limitations. First, the complexity of the model may require 
higher computational resources during both training and deployment, which may not be practical for 
certain application scenarios. Second, although our model performed well across multiple datasets, 
its generalization ability still needs improvement, especially when dealing with unknown domains 
or data distributions. Addressing these challenges will be a focal point of future research. Looking 
ahead to future work, we plan to enhance our model through various avenues. First, we will explore 
model lightweighting and optimization techniques to reduce computational resource demands, making 
it more suitable for real-world applications. Second, we will concentrate on improving the model’s 
generalization capability, including adapting it to new domains and different data distributions. Finally, 
we will continue to refine the TPA mechanism to better model time series data. The significance of 
this study lies in providing a promising novel model for anomaly detection in the carbon offsetting 
domain and laying out directions for future improvements and research. Through ongoing efforts, we 
hope to extend the application of this research to a broader range of domains and contribute further 
to the reduction of greenhouse gas emissions, climate change mitigation, and the achievement of 
sustainable development goals.
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